Путь к современной фотографии был непростым и
довольно длительным. Еще в 1727 г. немецкий химик Шульце обнаружил
чувствительность солей серебра к свету. Эти соли темнели на свету, а в
темноте оставались без изменения. Уместно отметить, что за два года до
Шульце сообщение о действии света на химические соединения было сделано
русским государственным деятелем и дипломатом А.П. Бестужевым-Рюминым. В
1777 г. выдающийся шведский химик Шееле установил, что эффективность
воздействия света на хлорид серебра AgCl зависит от длины волны. Для
регистрации света он впервые использовал бумагу, на поверхность которой
был нанесен хлорид серебра. Разложение хлорида серебра Шееле выразил
схематическим уравнением
2AgCl – [свет] = 2Ag + Cl2
которое считается вполне правомерным и на
сегодняшний день. Потемнение соли вызывается образующимся металлическим
серебром. Таким образом, участки бумаги, на которые попадал свет,
темнели, а незасвеченные оставались неизменными. Для истории развития
фотографии важно и то, что Шееле впервые предложил способ закрепления
(фиксации) изображения, получающегося на засвеченных участках. Для этого
он использовал раствор аммиака, который растворял незасвеченный хлорид
серебра в соответствии с уравнением
AgCl + 2NH3 = [Ag(NH3)2]Cl
Поскольку хлорид серебра удалялся, то дальнейшее
действие света на материал прекращалось. К сожалению, этот способ
фиксации изображения, как и способ получения изображения, был надолго
оставлен без внимания.
Важный этап в развитии фотографического процесса
связан с именем парижского художника-декоратора Дагерра. В 1835 г. он
завершил разработку процесса, который впоследствии получил название
дагерротипии. Его сущность заключается в следующем: отполированную
серебряную пластинку вносили в пары иода. В результате на ее поверхности
появлялся слой иодида серебра в соответствии с уравнением
2Ag + I2 = 2AgI
Пластинку экспонировали в камере-обскуре –
прототипе фотографического аппарата (Камера-обскура по-лат. означает –
темная комната.)
В результате длительного экспонирования на пластинке
получалось слабое изображение (скрытое изображение), создаваемое
атомами металлического серебра:
2AgI = 2Ag + I2
Затем пластинка помещалась в темную камеру,
содержащую пары ртути. Ртуть взаимодействует с металлическим серебром с
образованием сплава – амальгамы серебра. Таким путем происходит усиление
изображения за счет увеличения массы, т.е. происходит проявление
скрытого изображения. Поскольку на поверхности пластинки оставалось
много AgI, то она продолжала оставаться светочувствительной. Чтобы
«закрепить» изображение, нужно удалить с поверхности иодид серебра.
Дагерр использовал для этой цели теплый раствор NaCl. При обработке этим
раствором пластинки происходила реакция
AgI + NaCl = Na[AgICl]
в результате которой иодид серебра растворялся и
удалялся с поверхности пластинки. В 1839 г. для закрепления изображения
стал применяться раствор тиосульфата натрия Na2S2O3. Он гораздо с большей скоростью удалял с поверхности иодид серебра. В этом случае реакция протекала в соответствии с уравнением
AgI + 2Na2S2O3 = Na3[Ag(S2O3)2] + NaI
Тиосульфат натрия в качестве закрепителя (фиксажа) используют и в настоящее время.
Таким образом, в фотографии имеются следующие
стадии: экспонирование фотоматериала на свету и появление скрытого
(первичного) изображения, проявление скрытого изображения, т.е. его
усиление до видимого, и, наконец, закрепление (фиксаж) изображения.
Применение в фотографическом процессе солей серебра,
нанесенных на бумагу, связано с именем англичанина Талбота. Он
осуществлял это пропиткой листа бумаги раствором AgNO3 с последующим погружением его в раствор NaCl. В результате на бумаге протекала обменная реакция
AgNO3 + NaCl = AgCl + NaNO3
Талбот использовал такой лист в камере обскура, но
фотографии получались худшего качества, чем на пластинке серебра,
обработанной парами иода. Однако важно то, что с именем Талбота связано
изобретение негативно-позитивного процесса в фотографии. Он начал
изготавливать копии фотографий, приводя в контакт первоначальный
отпечаток (негатив) с другим таким же листом бумаги с последующим
облучением светом, проявлением и закреплением изображения. Качество
позитивных изображений было очень низким, так как лист бумаги
малопрозрачен и на позитиве пропечатывалась структура бумаги-подложки.
Совершенно естественным было стремление заменить непрозрачную бумагу
прозрачным материалом. Это удалось сделать французу Ньепсу. В 1847 г. он
применил стекло, на которое наносился слой альбумина, включающий
светочувствительное вещество (соль серебра). Для изготовления
фоточувствительного материала готовили раствор KI в яичном белке
(сбиванием и отстаиванием), которым поливали стеклянные пластинки и слой
высушивали. Перед экспонированием пластинку погружали в раствор нитрата
серебра NaNO3, затем вновь высушивали. Негативы, получаемые на таких
пластинках, были довольно высокого качества и хорошо передавали детали
оригинала при изготовлении позитивов.
Несколько позднее англичанин Скотт-Арчер разработал
способ изготовления коллоидных фотоматериалов, в котором на стеклянную
пластинку наносили слой эмульсии из коллоксилина (эфира целлюлозы) и
азотной кислоты примерного состава [C6H7O2(ONO2)3]n
в смеси со спиртом, в которую вводились растворимые в спирте бромид и
иодид натрия. После частичного испарения растворителя пластинка также
помещалась в раствор AgNO3 и в результате в слое эмульсии
образовывался однородный слой, содержащий смесь мелкодисперсных
светочувствительных кристаллов бромида и иодида серебра.
Важный этап в производстве современных
фотографических материалов связан с именем англичанина Медокса, который в
качестве носителя галогенидов серебра использовал (1871) желатину –
продукт, извлекаемый из белков, составляющих основу соединительных
тканей животных (сухожилия, хрящи, кости). Значительно позднее было
установлено, что желатина не только среда, но и вносит вклад в
характеристики фотоматериалов.
Таким образом, благодаря многочисленным
исследованиям, проведенным в различных лабораториях, к 80-м годам XIX
столетия сформировался негативно-позитивный фотографический процесс. Для
негативов использовались стеклянные фотопластинки, а для получения
позитивов – фотобумага. В настоящее время вместо стеклянной подложки в
основном используют полимерные пленки (триацетат-целлюлозные или
полиэфирные). Строение современной типичной галогенсеребряной пленки
довольно сложное.
Кроме галогенидов серебра в состав фотоэмульсий
входят различные добавки (сенсибилизаторы, стабилизаторы, дубители,
пластификаторы, противоореольные красители, антистатические вещества). В
частности, сенсибилизаторы повышают чувствительность фотоматериалов в
различных зонах спектра. Помимо подложки и эмульсионных слоев фотопленки
могут содержать различные вспомогательные слои: адгезионный,
противоореольный, противоскручивающий, защитный, антистатический.
В данной книге нет возможности углубляться в детали
строения фотографических пленок. Интересующихся этим вопросом можно
рекомендовать обратиться к специальной литературе.
Следует также отметить, что наряду с
совершенствованием фотоматериалов происходило совершенствование
фотокамер. Первый фотографический аппарат был создан изобретателем
фотокопировального процесса – Ньепсом. Именно он снабдил камеру-обскуру
объективом.
Современные представления о химической сущности стадий получения фотоизображения
Первой стадией фотографического процесса является
экспонирование фотоматериала светом и появление скрытого изображения.
Механизм образования последнего учеными не выяснен окончательно.
Существуют различные теории и взгляды. Однако у специалистов нет
сомнения, что оно создается атомами металлического серебра, которые так
или иначе образуются вследствие фотохимической реакции, например
AgBr = Ag + Br
Обратному протеканию реакции, т.е. окислению атомов
серебра атомами брома, в фотоэмульсии препятствует желатина. Многие
ученые считают, что первой стадией фотолиза является отрыв электрона от
галогенидного иона с образованием атома галогена: Br – – e– > Br.
Электрон перемещается по микрокристаллу и попадает в потенциальную
энергетическую яму («ловушку»). Наличие в яме одного или нескольких
электронов придает ей отрицательный заряд. В соответствии с законом
Кулона эти электроны притягивают к себе положительно заряженные ионы
серебра и восстанавливают их. В результате вокруг ямы образуются группы
атомов серебра в соответствии с уравнением
nAg+ + ne– = nAg
Устойчивую группу атомов серебра, образующуюся под
действием света, в микрокристалле галогенида серебра называют центром
скрытого изображения. Скрытое изображение невидимо не только
невооруженным глазом, но и на оптическом микроскопе. Размер центров
скрытого изображения оценивается в 10–7...10–8 см, т.е. он лежит за пределами возможностей оптического разрешения приборов.
Сущность проявления (визуализации) скрытого
изображения сводится к химическому восстановлению галогенидов серебра на
освещенных участках фотоматериала
AgBr + e– = Ag + Br –
Специфика этого процесса состоит в том, что
восстановитель должен действовать на облученные светом микрокристаллы
намного быстрее, чем на необлученные. Значительно большая скорость
восстановления облученных кристаллов связана с тем, что образовавшиеся
частицы металлического серебра оказывают каталитическое действие на
реакцию химического восстановления. В результате проявления усиление
скрытого изображения происходит в 105...1011 раз.
Фотографический проявитель – многокомпонентная
смесь. Она содержит химический восстановитель; вещество, создающее
щелочную реакцию раствора (Na2CO3, K2CO3, Na2B4O7, NaOH и др.); вещество, предохраняющее восстановитель от быстрого окисления кислородом воздуха (обычно Na2SO3);
вещество, устраняющее вуаль (чаще всего KBr). Проявитель растворяют в
воде. Среди химических восстановителей в проявителе чаще всего
используют гидрохинон:
Как уже было отмечено, после проявления изображения
следует стадия его закрепления (фиксирования). Для этого необходимо
удалить с фотоматериала незасвеченные и потому не восстановленные
проявителем кристаллы галогенида серебра. Цель достигается путем
перевода малорастворимой в воде соли серебра в хорошо растворимую.
Наиболее распространенным средством закрепления изображения является
тиосульфат натрия Na2S2O3. Его старое
название – гипосульфит. Данная соль переводит галогенид серебра
(например, NaBr) в растворимое комплексное соединение Na3[Ag(S2O3)2] в соответствии с уравнением
AgBr + 2Na2S2O3 = Na3[Ag(S2O3)2] + NaBr
После обработки фиксажным раствором фотоматериал
необходимо тщательно промыть водой. Операция фиксирования изображения
требует некоторого времени. Если ее прервать или использовать истощенный
фиксирующий раствор, то образуется не комплексное соединение, а
малорастворимая соль NaAgS2O3. Она не удаляется полностью с фотоматериала и со временем разлагается по уравнению
2NaAgS2O3 + 2H2О = Ag2S + H2S + 2NaHSO4
Сульфид серебра в зависимости от крупности
кристаллов окрашен в коричневый или черный цвет и потому на
фотоматериале появляются желтые или бурые пятна. Если операция
закрепления проведена правильно, то изображение будет устойчиво и
фотоматериал может быть высушен.
В результате трех изложенных стадий фотопроцесса на
фотопленке получается негативное изображение. Для создания позитивного
изображения необходимо повторить процесс, освещая (обычно) фотобумагу
через пленку, на которой имеется негативное изображение.