2.1 Нагревание и охлаждение

Нагревание и охлаждение - важнейшие средства регулирования хода химических процессов. Температура влияет не только на скорость органических реакций, но часто и на их направление. Охлаждение необходимо при проведении некоторых реакции, выделении продуктов реакций, а также при хранении нестойких веществ.

Нагревание. Большинство реакций органической химии идут при комнатной температуре весьма медленно. Чтобы увеличить скорость таких реакций, повышают температуру, считая, что обычно при повышении температуры на 10° С скорость реакции возрастает примерно в 2–3 раза.

Прямое нагревание на пламени газовой горелки или на электрической плитке может приводить к местным перегревам и осмолению реакционной смеси. Этого можно избежать при использовании нагревательных бань разных типов: водяных, воздушных, песчаных, масляных.

Для нагревания веществ до 100° С используют водяные бани. Нагреваемый сосуд помещают в воду так, чтобы он не касался дна бани и чтобы уровень жидкости в сосуде и уровень воды в бане совпадали.

Для нагревания от 100 до 150 °C используют масляные бани. Такие бани заполняют минеральными маслами, получаемыми из нефти.

Простейшую воздушную баню можно получить, если между пламенем горелки и нагреваемой колбой поместить асбестовую сетку. Таким способом можно нагреть вещество до $250\,^{\circ}\mathrm{C}$.

Песчаные бани позволяют нагревать вещества до 400 °C.

Следует помнить, что при повышенных температурах пользуются только круглодонными колбами, изготовленными из высококачественного стекла.

При нагревании выше температуры кипения во избежание перегрева жидкости и вызываемых этим толчков в колбу помещают "кипелки" (мелкие кусочки битого фарфора). Во время нагревания из их пор выделяются пузырьки воздуха, являющиеся центрами парообразования, что обеспечивает равномерное кипение жидкости.

Охлаждение. В экзотермических реакциях может произойти перегрев реакционной смеси, что приводит к снижению выхода продукта. В таких случаях необходимо охладить эту смесь. Охлаждение насыщенных растворов способствует кристаллизации твердых веществ при их выделении и очистке.

Самое удобное средство охлаждения — водопроводная вода (температура ее колеблется от 4 до 20 °C). Обычно реакционный сосуд охлаждают под краном проточной водой или периодически погружают его в холодную воду.

Для охлаждения сосуда до 0 °C пользуются измельченным льдом, а для дальнейшего снижения температуры — охлаждающими смесями (например, смесью льда с поваренной солью).

Для охлаждения и конденсации паров, образующихся при кипении органических жидкостей, применяют различные типы холодильников. Холодильники, в рубашках которых циркулирует холодная вода, называют водяными холодильниками (рис. 1a, δ , ϵ). Их используют для охлаждения паров жидкостей с температурой кипения до $130\,$ °C. При работе с водяными

холодильниками необходимо помнить, что к водопроводному крану присоединяют нижний отвод "рубашки" холодильника, а через верхний воду направляют в раковину (слив). Холодильник должен быть полностью заполнен водой, циркуляция ее через холодильник *не должна прекращаться* до окончания опыта.

Для охлаждения и конденсации паров высококипящих жидкостей (с температурой кипения выше 130 °C) используют воздушные холодильники (рис. 1г), которые представляют собой длинные стеклянные трубки. Охлаждающим средством, в данном случае, является окружающий воздух.

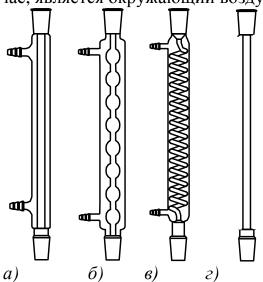


Рисунок 1 — Холодильники: a) Либиха; δ) шариковый; δ) змеевиковый; δ) воздушный